Environmental life cycle assessment of lignocellulosic conversion to ethanol: A review
Aiduan Li Borrion,
Marcelle C. McManus and
Geoffrey P. Hammond
Renewable and Sustainable Energy Reviews, 2012, vol. 16, issue 7, 4638-4650
Abstract:
Bioenergy from lignocellulosic biomass offers the potential to provide a significant source of clean, low carbon and secure energy. In recent years, a number of studies have been carried out to assess the environmental performance of lignocellulosic ethanol fuel. However, the complexity of biofuel systems generates significantly different results due to the differences in input data, methodologies applied, and local geographical conditions. Moreover, much attention has been placed on assessing climate change potential and energy consumption. This study draws on 53 published life cycle assessment of the lignocellulosic ethanol. More than half of the articles reviewed focus on assessing greenhouse gas (GHG) emission or fossil energy consumption or combination of both. All studies but two reviewed conclude that there is a reduction of GHG emission when using lignocellulosic ethanol in comparison to fossil fuel reference system. However, different studies have reported different sources contributing to GHG emission: some reports majority of GHG emissions come from biomass cultivation stage; others argue significant GHG emissions from ethanol conversion process. All articles suggest a reduction of fossil consumption in all cases of ethanol fuel. Contrary results for the impact of acidification and eutrophication potential from lignocellulosic ethanol are also observed—some reports less impact in comparison to conventional gasoline whiles others report significant increase of acidification and eutrophication potential by ethanol production. Studies also show water consumption varies significantly depending on biomass types, irrigation requirement, and regional irrigation practices; with different findings on whether agricultural practices or ethanol conversion being the main sources for water consumption. Contrary findings on emissions contributing to ecotocixity and human health have also been reported with some being favourable while others not. Results from the literature also suggest strong dependency of LCA results on system boundary, functional unit, data quality and allocation methods chosen.
Keywords: LCA; Lignocelluloses; Bioethanol; Environmental impact; Sustainability (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (26)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032112002742
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:16:y:2012:i:7:p:4638-4650
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2012.04.016
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().