A review on the role of materials science in solar cells
Nilofar Asim,
Kamaruzzaman Sopian,
Shideh Ahmadi,
Kasra Saeedfar,
M.A. Alghoul,
Omidreza Saadatian and
Saleem H. Zaidi
Renewable and Sustainable Energy Reviews, 2012, vol. 16, issue 8, 5834-5847
Abstract:
The demand for energy of modern society is constantly increasing. The desire for environmental-friendly alternative energy resources with the least dependency on fossil fuels is growing. Solar energy is an important technology for many reasons and is worthy of urgent attention. Indeed, it has experienced rapid growth over the last few years. It is expected to become truly main stream when the breakeven of high performance is achieved and its cost becomes comparable with other energy sources. Various approaches have been proposed to enhance the efficiency of solar cells. This paper reviews some current initiatives and critical issues on the efficiency improvement of solar cells from the material sciences and chemistry perspectives.
Keywords: Materials; Chemistry; Solar cells; Nanomaterials (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S136403211200384X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:16:y:2012:i:8:p:5834-5847
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2012.06.004
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().