EconPapers    
Economics at your fingertips  
 

Potential prospects of supercritical CO2 power cycles for commercialisation: Applicability, research status, and advancement

M. Monjurul Ehsan, Muhammad Awais, Sangkyoung Lee, Sayedus Salehin, Zhiqiang Guan and Hal Gurgenci

Renewable and Sustainable Energy Reviews, 2023, vol. 172, issue C

Abstract: The excellent thermo-physical and chemical properties of CO2 suggest its employment as a working fluid in power sectors owing to several benefits over the steam cycle. The present review emphasizes the potential prospects of supercritical CO2 power cycles in terms of its current status and advancement of its components. This is continuing investigation towards the attainment of safe operation at such high working pressures and temperatures. Numerous studies on supercritical CO2 (sCO2) power cycles in various layouts (standalone and combined) are reported with the major findings applicable for different energy sectors. The current state art of the experimental facilities with CO2 power cycle working under trans-critical/supercritical states in various research institutes is elucidated. For initial commercialization, these facilities provide a pathway for operational demonstration and control strategies. The enhancement in thermo-hydraulic performance and effectiveness of recuperators demands the execution of innovative and advanced techniques in conventional recuperators. Printed circuit heat exchangers are considered to be the most pertinent recuperators which possess the inimitable properties of augmented efficiency, impressive against withstanding higher temperature/pressure and especially their ample performance during operating conditions despite the drastic variations in thermophysical properties of supercritical fluid. The improvement in thermo-hydraulic performance of conventional recuperators after incorporating the novel geometric configurations has been extensively reviewed in this study. Moreover, the impact of non-linear variation of thermodynamic properties of supercritical fluid on efficiency, performance and stability of turbomachineries (centrifugal compressor and gas turbines) has also been broadly demonstrated through the recent experimental and numerical investigations. This research article certainly will contribute towards the development of future power generation by clean energy technologies to subside the alarming energy crisis. This article will also contribute to the development of renewable and sustainable energy sectors.

Keywords: Supercritical CO2; Advanced power cycles; Turbomachinery; Recuperators; Sustainability (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S136403212200925X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:172:y:2023:i:c:s136403212200925x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2022.113044

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:172:y:2023:i:c:s136403212200925x