Predicting industrial building energy consumption with statistical and machine-learning models informed by physical system parameters
Sean Kapp,
Jun-Ki Choi and
Taehoon Hong
Renewable and Sustainable Energy Reviews, 2023, vol. 172, issue C
Abstract:
The industrial sector consumes about one-third of global energy, making them a frequent target for energy use reduction. Variation in energy usage is observed with weather conditions, as space conditioning needs to change seasonally, and with production, energy-using equipment is directly tied to production rate. Previous models were based on engineering analyses of equipment and relied on site-specific details. Others consisted of single-variable regressors that did not capture all contributions to energy consumption. New modeling techniques could be applied to rectify these weaknesses. Applying data from 45 different manufacturing plants obtained from industrial energy audits, a supervised machine-learning model is developed to create a general predictor for industrial building energy consumption. The model uses features of air enthalpy, solar radiation, and wind speed to predict weather-dependency; motor, steam, and compressed air system parameters to capture support equipment contributions; and operating schedule, production rate, number of employees, and floor area to determine production-dependency. Results showed that a model that used a linear regressor over a transformed feature space could outperform a support vector machine and utilize features more representative of physical systems. Using informed parameters to build a reliable predictor will more accurately characterize a manufacturing facility's energy savings opportunities.
Keywords: Industrial energy efficiency; Building energy models; Energy usage prediction; Machine learning (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032122009261
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:172:y:2023:i:c:s1364032122009261
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2022.113045
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().