EconPapers    
Economics at your fingertips  
 

Schroeder's paradox in proton exchange membrane fuel cells: A review

Lei Chen, Yanyu Chen and Wen-Quan Tao

Renewable and Sustainable Energy Reviews, 2023, vol. 173, issue C

Abstract: Schroeder's paradox discovered by Schroeder in 1905 refers to the phenomenon that polymers have different maximum water uptake in the liquid and saturated vapor phases. For more than a hundred years, people have often debated whether this phenomenon conforms to thermodynamics. As proton exchange membrane fuel cell (PEMFC) gradually becomes a promising renewable energy utilization device, its impact on the physical properties of the proton exchange membrane has been studied widely. This paper reviews the theory and experiments on Schroeder's paradox over more than 100 years, especially the exploration of perfluorosulfonic acid membranes and PEMFCs in recent decades. Since membrane water content determines the operational performance of the PEMFC, this paper discusses and analyzes the effect of Schroeder's paradox on the PEMFC performance, including mechanical properties, electrical conductivity, and water transport mechanism. The effect of this phenomenon on the non-equilibrium operation of PEMFC has been highlighted, such as cold start-up, because of the different properties of membranes in contact with liquid water and air. This review gives an introduction to critical aspects of Schroeder's paradox to serve governments and organizations to promote the application of PEMFC in different regions.

Keywords: PEMFC; Proton exchange membrane; Schroeder's paradox; Nafion®; Water uptake (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032122009315
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:173:y:2023:i:c:s1364032122009315

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2022.113050

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:173:y:2023:i:c:s1364032122009315