Reinforcement learning for electric vehicle applications in power systems:A critical review
Dawei Qiu,
Yi Wang,
Weiqi Hua and
Goran Strbac
Renewable and Sustainable Energy Reviews, 2023, vol. 173, issue C
Abstract:
Electric vehicles (EVs) are playing an important role in power systems due to their significant mobility and flexibility features. Nowadays, the increasing penetration of renewable energy resources has been observed in modern power systems, which brings many benefits for improving climate change and accelerating the low-carbon transition. However, the intermittent and unstable nature of renewable energy sources introduces new challenges to both the planning and operation of power systems. To address these issues, vehicle-to-grid (V2G) technology has been gradually recognized as a valid solution to provide various ancillary service provisions for power systems. Many studies have developed model-based optimization methods for EV dispatch problems. Nevertheless, this type of method cannot effectively handle the highly dynamic and stochastic environment due to the complexity of power systems. Reinforcement learning (RL), a model-free and online learning method, can capture various uncertainties through numerous interactions with the environment and adapt to various state conditions in real-time. As a result, using advanced RL algorithms to solve various EV dispatch problems has attracted a surge of attention in recent years, leading to many outstanding research papers and important findings. This paper provides a comprehensive review of popular RL algorithms categorized by single-agent RL and multi-agent RL, and summarizes how these advanced algorithms can be applied to various EV dispatch problems, including grid-to-vehicle (G2V), vehicle-to-home (V2H), and V2G. Finally, key challenges and important future research directions are discussed, which involve five aspects: (a) data quality and availability; (b) environment setup; (c) safety and robustness; (d) training performance; and (e) real-world deployment.
Keywords: Electric vehicles; Vehicle-to-grid; Reinforcement learning; Power systems (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032122009339
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:173:y:2023:i:c:s1364032122009339
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2022.113052
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().