Dynamic modeling of the motions of variable-shape wave energy converters
Mohamed A. Shabara and
Ossama Abdelkhalik
Renewable and Sustainable Energy Reviews, 2023, vol. 173, issue C
Abstract:
In the recently introduced Variable-Shape heaving wave energy converters, the buoy changes its shape actively in response to changing incident waves. In this study, a Lagrangian approach for the dynamic modeling of a spherical Variable-Shape Wave Energy Converter is described. The classical bending theory is used to write the stress–strain equations for the flexible body using Love’s approximation. The elastic spherical shell is assumed to have an axisymmetric vibrational behavior. The Rayleigh–Ritz discretization method is adopted to find an approximate solution for the vibration model of the spherical shell. A novel equation of motion is presented that serves as a substitute for Cummins equation for flexible buoys. Also, novel hydrodynamic coefficients that account for the buoy mode shapes are proposed. The developed dynamic model is coupled with the open-source boundary element method software NEMOH. Two-way and one-way Fluid–Structure Interaction simulations are performed using MATLAB to study the effect of using a flexible shape buoy in the wave energy converter on its trajectory and power production. Finally, the variable shape buoy was able to harvest more energy for all the tested wave conditions.
Keywords: Wave energy converter; Point absorber; Flexible material WEC; Variable shape wave energy converter; Variable geometry wave energy converter; Spherical shell; Lagrangian mechanics; Rayleigh–Ritz approximation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032122009510
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:173:y:2023:i:c:s1364032122009510
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2022.113070
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().