Current nature-based biological practices for rare earth elements extraction and recovery: Bioleaching and biosorption
Rebecca M. Brown,
Amin Mirkouei,
David Reed and
Vicki Thompson
Renewable and Sustainable Energy Reviews, 2023, vol. 173, issue C
Abstract:
There is a growing demand for advancing products and renewable technologies worldwide that rely on rare earth elements (REEs), including those directly necessary for a low-carbon energy transition, national security applications, and consumer electronics. This study focuses on current nature-based biological methods (i.e., bioleaching and biosorption) for REEs extraction from electronic wastes (e-wastes) and ore deposits. Comprehensive narrative and systematic reviews of bioleaching and biosorption extraction methods are performed to identify their sustainability challenges and benefits, and highlight the potential pathways that would address the existing gaps. From the narrative review, it is evident that biological methods for REEs extraction are more environmentally friendly than conventional methods currently used in the REE mining industry (e.g., acid leaching and solvent extraction). From the systematic review, it is clear that bioleaching and biosorption research has been a rapidly growing field of interest over the last 10 years, particularly for precious metals extraction (e.g., copper and gold). From both reviews, it is apparent that REEs extraction from domestic ore deposits alone is inadequate, and sustainable REEs recovery from e-wastes is also necessary to meet the growing REEs demand. It is concluded that targeted mixed REEs extraction for specific products can be a potential pathway for sustainable REEs extraction from both ore and e-wastes that would reduce separation costs and emissions from the associated use of harsh chemicals. It is further concluded that nature-based biological REE extraction solutions offer an opportunity to generate significant socio-economic and environmental benefits.
Keywords: Bioleaching; Biosorption; Rare earth element; Electronic wastes; Renewable; Sustainability (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032122009807
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:173:y:2023:i:c:s1364032122009807
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2022.113099
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().