Furfural from pyrolysis of agroforestry waste: Critical factors for utilisation of C5 and C6 sugars
Qiaoqiao Zhou,
Zhenyu Liu,
Ta Yeong Wu and
Lian Zhang
Renewable and Sustainable Energy Reviews, 2023, vol. 176, issue C
Abstract:
Furfural, a promising platform biochemical, plays an important role in the seamless transition of the current fossil fuel-centric economy to a carbon-neutral future. This paper reviews the state-of-the-art advances of furfural production from biomass with a particular focus on C6 sugars and the emerging pyrolysis method. To date, conversion of C6 to furfural has yet to be successful, while C5 sugars were primarily targeted in science and industry communities. Firstly, the effects of operating conditions and the roles of different catalysts have been reviewed. The optimum temperature varies from 300 to 600 °C for different feedstocks, with the residence time falling in the order of seconds. Water plays an essential role in the conversion of C6 sugars. The water-rich systems favour the production of 5-hydroxymethyl-furfural, while the water-lean systems facilitate furfural production. Secondly, the structure-activity correlations between furfural yield/selectivity and catalyst properties and the reaction pathways of C5 and C6 sugars were reviewed extensively. While the C5 only require a dehydration reaction to produce furfural, the C6 need dehydration and selective removal of the formaldehyde side group. Therefore, a specifically designed bifunctional catalyst is essential. In contrast to homogeneous mineral acids, solid heterogeneous catalysts are preferred for producing furfural due to their easiness of post-separation and environmental friendliness. More specifically, the sulphates and sulfonated catalysts are the most active due to their stronger acidity and thermal stability. Finally, the knowledge gaps and future perspectives are proposed, including unlocking C6 sugars, advancing pyrolysis technology and synthesis of advanced solid acid catalysts.
Keywords: Furfural; Agroforestry waste; C6 cellulose; Catalyst; Pyrolysis (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032123000503
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:176:y:2023:i:c:s1364032123000503
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2023.113194
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().