Hydrogen liquefaction and storage: Recent progress and perspectives
Tongtong Zhang,
Joao Uratani,
Yixuan Huang,
Lejin Xu,
Steve Griffiths and
Yulong Ding
Renewable and Sustainable Energy Reviews, 2023, vol. 176, issue C
Abstract:
The global energy sector accounts for ∼75% of total greenhouse gas (GHG) emissions. Low-carbon energy carriers, such as hydrogen, are seen as necessary to enable an energy transition away from the current fossil-derived energy paradigm. Thus, the hydrogen economy concept is a key part of decarbonizing the global energy system. Hydrogen storage and transport are two of key elements of hydrogen economy. Hydrogen can be stored in various forms, including its gaseous, liquid, and solid states, as well as derived chemical molecules. Among these, liquid hydrogen, due to its high energy density, ambient storage pressure, high hydrogen purity (no contamination risks), and mature technology (stationary liquid hydrogen storage), is suitable for the transport of large-volumes of hydrogen over long distances and has gained increased attention in recent years. However, there are critical obstacles to the development of liquid hydrogen systems, namely an energy intensive liquefaction process (∼13.8 kWh/kgLH2) and high hydrogen boil-off losses (liquid hydrogen evaporation during storage, 1–5% per day). This review focuses on the current state of technology development related to the liquid hydrogen supply chain. Hydrogen liquefaction, cryogenic storage technologies, liquid hydrogen transmission methods and liquid hydrogen regasification processes are discussed in terms of current industrial applications and underlying technologies to understand the drivers and barriers for liquid hydrogen to become a commercially viable part of the emerging global hydrogen economy. A key finding of this technical review is that liquid hydrogen can play an important role in the hydrogen economy - as long as necessary technological transport and storage innovations are achieved in parallel to technology demonstrations and market development efforts by countries committed liquid hydrogen as part of their hydrogen strategies.
Keywords: Hydrogen economy; Hydrogen storage; Liquid hydrogen; Hydrogen liquefaction; Hydrogen transmission (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032123000606
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:176:y:2023:i:c:s1364032123000606
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2023.113204
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().