EconPapers    
Economics at your fingertips  
 

A systematic literature review on under-frequency load shedding protection using clustering methods

T. Skrjanc, R. Mihalic and U. Rudez

Renewable and Sustainable Energy Reviews, 2023, vol. 180, issue C

Abstract: System integrity protection schemes safeguard electric power systems’ overall integrity, among which under-frequency load shedding carries a flagship role. Although triggered rarely, it is irreplaceable in protecting the system from tremendous consequences of a blackout. The search for an optimal strategy has produced numerous innovations over the past 30 years, making it easy to lose track of the state-of-the-art due to the abundance. Given the increasing number of system splits in Europe and the ongoing operational paradigm shift, it is expected that existing load shedding concepts are about to be severely challenged. They are already expected to act more flexibly and, in the future, they may even require a complete redesign to support decarbonization efforts. This is why this research aims to provide a systematic review of existing load shedding algorithms. This is done by categorizing the accessible and adequately documented algorithms using machine learning clustering, more specifically, principal component analysis and t-distributed stochastic neighbour embedding combined with density-based spatial clustering of applications with noise. More than 380 publications were examined and both general and specific features were extracted from each of them. The study provides the description of 54 features along with their pros and cons related to their impact on system frequency stability. These efforts resulted in 28 recognized groups of algorithms, which can be helpful to stakeholders involved in securing and studying electric power system stability. The presented clustering proved very useful and can be extended to any technical field suffering from poor clarity of the state-of-the-art.

Keywords: Literature review; Under-frequency load shedding; T-distributed stochastic neighbour embedding; Principal component analysis; Machine learning; Clustering; Power system protection; Power system stability; Blackouts; Power system resilience (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032123001508
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:180:y:2023:i:c:s1364032123001508

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2023.113294

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:180:y:2023:i:c:s1364032123001508