EconPapers    
Economics at your fingertips  
 

Impact of labor and energy allocation imbalance on carbon emission efficiency in China's industrial sectors

Sheng Zhang, Ran Yu, Zuhui Wen, Jiayu Xu, Peihan Liu, Yunqiao Zhou, Xiaoqi Zheng, Lei Wang and Jiming Hao

Renewable and Sustainable Energy Reviews, 2023, vol. 184, issue C

Abstract: Greenhouse gas emission is the focus of global climate change concerns. The change in industrial structure can impact carbon emission efficiency (CEE) by affecting labor and energy input. However, there is an obvious imbalance of labor and energy allocation within China's industrial sectors. Here, we use the super-slacks-based model data envelopment analysis (Super-SBM-DEA) to calculate the CEE of 32 industrial sectors and adopt the Tobit model to analyze the impact of industrial allocation imbalance on CEE. The results show that the overall industry and manufacturing CEE is still at a low level, with an average CEE of 0.53. The industrial sectors with higher CEE are these sectors with advanced innovative technology and low energy consumption. The results of the Tobit model show that the imbalance of labor and energy allocation is the key factor limiting carbon emission efficiency improvement. Furthermore, the imbalance of labor allocation hurts the CEE of labor-intensive sectors. The coefficient of labor allocation imbalance (distL) is −2.483, and the inflow of labor can improve the CEE of non-labor-intensive sectors. The CEE of energy-intensive sectors is sensitive to the imbalance of energy allocation, the marginal impact of energy allocation imbalance (distE) is −2.296. Improving energy efficiency is a key task to reduce carbon emissions in sectors relying on energy input. But for non-energy-intensive sectors, optimizing energy allocation has a limited effect on reducing carbon emissions. This research can provide insights for emerging economies to coordinate carbon reduction and industrial transformation.

Keywords: Industrial allocation imbalance; Industrial sector; Carbon emission efficiency; Global climate change (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032123004434
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:184:y:2023:i:c:s1364032123004434

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2023.113586

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:184:y:2023:i:c:s1364032123004434