EconPapers    
Economics at your fingertips  
 

A systematic review of life cycle greenhouse gas intensity values for hydrogen production pathways

P. Busch, A. Kendall and T. Lipman

Renewable and Sustainable Energy Reviews, 2023, vol. 184, issue C

Abstract: Hydrogen is a potential low-carbon energy carrier to replace fossil fuels, especially in industrial and transportation applications where decarbonization is particularly challenging. Hydrogen can be generated via several feedstocks and technology combinations (pathways) that result in different life cycle greenhouse gas emissions intensities, thus policies and investments intended to deploy hydrogen as a climate solution must differentiate among pathways. To collect and analyze current estimates of the life cycle greenhouse gas intensity of hydrogen pathways, a systematic scholarly literature review was conducted capturing article published between 2018 and 2022.

Keywords: Life cycle assessment; Carbon intensity; Greenhouse gas; Sustainability; Hydrogen; Steam methane reforming; Electrolysis (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032123004458
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:184:y:2023:i:c:s1364032123004458

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2023.113588

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:184:y:2023:i:c:s1364032123004458