Uncertainty models for the structural design of floating offshore wind turbines: A review
Mahyar Ramezani,
Do-Eun Choe,
Khashayar Heydarpour and
Bonjun Koo
Renewable and Sustainable Energy Reviews, 2023, vol. 185, issue C
Abstract:
Floating offshore wind turbines have arisen as a promising option to access massive wind energy resources in deep water, where the existing fixed-type offshore wind turbine is no longer practical. However, due to the nature of the oceanic environmental conditions, large uncertainties are involved in the aerodynamic/hydrodynamic calculations, which are coupled with those within the structures and materials. This not only threatens its reliability but also drastically increases the manufacturing cost of floating offshore wind turbines. To understand the uncertainty within the system and properly predict its reliability, first, the uncertainties involved in the environments and subsystems need to be defined. Therefore, this paper aims to provide an extensive review of the uncertainty models involved in the structural design of floating offshore wind turbines. The presented uncertainties within the structures include those inherent in the material and geometrical/mechanical properties of the wind turbine, floating structures, and mooring lines. The uncertainties within hydrodynamics include empirical parameters and nonlinearities involved with the hydrodynamics modeling of the floaters. Within the environmental loads, the parameter uncertainties as well as the randomness of wind and wave loads are presented. The uncertainties growing over time caused by fatigue, corrosion, and climate hazards are also discussed. In addition, the correlation between the random variables, such as the correlation of the wind and wave, is presented. Finally, the method of treating those uncertainties is discussed, including the probabilistic model which incorporates the uncertainties and the correlations between the random variables, as well as modeling errors.
Keywords: Renewable energy; Floating offshore wind turbine; Uncertainty model; Probabilistic modeling; Life-cycle reliability; Corrosion and fatigue deteriorations (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032123004677
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:185:y:2023:i:c:s1364032123004677
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2023.113610
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().