System-driven design and integration of low-carbon domestic heating technologies
Marko Aunedi,
Andreas V. Olympios,
Antonio M. Pantaleo,
Christos N. Markides and
Goran Strbac
Renewable and Sustainable Energy Reviews, 2023, vol. 187, issue C
Abstract:
This research explores various combinations of electric heat pumps (EHPs), hydrogen boilers (HBs), electric boilers (EBs), hydrogen absorption heat pumps (AHPs) and thermal energy storage (TES) to assess their potential for delivering cost-efficient low-carbon heat supply. The proposed technology-to-systems approach is based on comprehensive thermodynamic and component-costing models of various heating technologies, which are integrated into a whole-energy system optimisation model to determine cost-effective configurations of heating systems that minimise the overall cost for both the system and the end-user. Case studies presented in the study focus on two archetypal systems: (i) the North system, which is characterised by colder climate conditions and abundant wind resource; and (ii) the South system, which is characterised by a milder climate and higher solar energy potential. The results indicate a preference for a portfolio of low-carbon heating technologies including EHPs, EBs and HBs, coupled with a sizable amount of TES, while AHPs are not chosen, since, for the investigated conditions, their efficiency does not outweigh the high investment cost. Capacities of heat technologies are found to vary significantly depending on system properties such as the volume and diversity of heat demand and the availability profiles of renewable generation. The bulk of heat (83–97%) is delivered through EHPs, while the remainder is supplied by a mix of EBs and HBs. The results also suggest a strong impact of heat demand diversity on the cost-efficient mix of heating technologies, with higher diversity penalizing EHP relatively more than other, less capital-intensive heating options.
Keywords: Energy system modelling; Heat pumps; Hybrid heating systems; Hydrogen boiler; System-driven design; Thermal energy storage (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S136403212300552X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:187:y:2023:i:c:s136403212300552x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2023.113695
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().