Active and passive safety enhancement for batteries from force perspective
Siqi Chen,
Xuezhe Wei,
Guangxu Zhang,
Xinyu Rui,
Chengshan Xu,
Xuning Feng,
Haifeng Dai and
Minggao Ouyang
Renewable and Sustainable Energy Reviews, 2023, vol. 187, issue C
Abstract:
Thermal runaway (TR) has become a critical issue for Li-ion battery applications in electric vehicles and energy storage stations. To address this issue, early warning and thermal runaway propagation (TRP) mitigation are significant for the active and passive safety of the battery system, respectively. This study proposes the expansion force as a reliable warning signal, which is proven to provide more interval (>500 s) for escape and rescue compared with voltage and temperature signals. Besides, the TR expansion force changing mechanism due to thermal expansion, gas generation/accumulation, and venting is investigated. Furthermore, the TRP expansion force and deformation changing mechanism is explained from the perspective of expansion, squeeze, and venting. The TRP debris deformation trend is verified through mechanical modeling. The maximum TR expansion force increment (ΔFmax)-capacity (Q) equalization and ΔFmax-cell index equations are proposed based on the TR/TRP tests of three types of prismatic batteries. Moreover, a TRP mitigation structure is proposed to amplify the TR expansion force, which is validated to effectively amplify the force, causing the mechanical destruction of the in-line module holder. A TRP mitigation test proves that the first TR cell capsizes the module holder to hinder the heat transfer between the front/back surfaces of the prismatic batteries when the TR expansion force exceeds the preload. Without enough heat transfer, the TR of the following battery cells cannot be triggered even under jet fire impact. This study guides the active and passive safety design for the prismatic battery system.
Keywords: Electrical vehicle; Energy storage; Expansion force; Active safety; Passive safety; Thermal runaway propagation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S136403212300597X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:187:y:2023:i:c:s136403212300597x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2023.113740
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().