EconPapers    
Economics at your fingertips  
 

Multiplex genome editing to construct cellulase engineered Saccharomyces cerevisiae for ethanol production from cellulosic biomass

Yatika Dixit, Preeti Yadav, Arun Kumar Sharma, Poornima Pandey and Arindam Kuila

Renewable and Sustainable Energy Reviews, 2023, vol. 187, issue C

Abstract: The production of biofuels from cellulosic biomass has emerged as an appealing alternative to fossil fuels. However, the recalcitrance of cellulose poses a challenge to converting it into fermentable sugars, impeding the economic viability of bioethanol production. S. cerevisiae, the primary species employed for industrial ethanol production, exhibits stress tolerance and the ability to ferment diverse sugars from various feedstocks. Nonetheless, the production of cellulase enzymes in S. cerevisiae remains limited. To tackle this hurdle, multiplex genome editing technologies offer a promising avenue for engineering recombinant cellulolytic S. cerevisiae strains, thus enabling ethanol production from cellulosic biomass. This review provides an overview of distinct multiplex genome editing techniques employed in the engineering of such strains. These encompass homologous recombination-mediated multiplex genome editing, mega nuclease-mediated multiplex genome editing, TALEN-mediated multiplex genome editing, CRISPR/Cas-mediated multiplex genome editing, multiplex genome editing involving multiple sgRNA expression frames, multiplex genome editing through sgRNA or crRNA arrays, and multiplex genomic integration targeting repetitive sequences. Furthermore, this review delves into the potential of cellulase-engineered S. cerevisiae for ethanol production. The successful development of recombinant cellulolytic S. cerevisiae strains holds the promise of revolutionizing the biofuel industry. This transformation would entail cost reductions in ethanol production, alongside enhancing industry sustainability, consequently diminishing our reliance on fossil fuels. The availability of cellulase-engineered S. cerevisiae strains for ethanol production from cellulosic biomass stands to curtail our dependency on fossil fuels and markedly alleviate the impacts of climate change.

Keywords: Genome integration; Single guide RNA; Cas protein; Consolidated bioprocessing; Cellulosic biofuel (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032123006299
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:187:y:2023:i:c:s1364032123006299

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2023.113772

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:187:y:2023:i:c:s1364032123006299