Converting methane into electricity and higher-value chemicals at scale via anaerobic microbial fuel cells
Thomas K. Wood,
Ilke Gurgan,
Ethan T. Howley and
Ingmar H. Riedel-Kruse
Renewable and Sustainable Energy Reviews, 2023, vol. 188, issue C
Abstract:
Methane (CH4) is the second most damaging greenhouse gas by absolute amounts released. Many globally distributed methane sources are of human origin, representing a significant untapped potential for capture and on-site conversion into electricity or ‘higher value’ chemicals. This study systematically and quantitatively analyzes the anaerobic oxidation of methane (AOM) in microbial fuel cells (MFCs) for generating electric power as well as analyzes AOM in bioreactors for producing value-added chemicals. The maximum performance of such systems is currently unknown. Based on biophysical arguments, power densities of 10 kW/m3 and more should be achievable, and Coulombic, carbon conversion, and energy conversion efficiency could reach 90%. Such performance is much higher than what is usually predicted. This AOM MFC approach promises higher efficiency, scalability, cost-effectiveness, and easier distribution compared to existing chemical plants or aerobic biological approaches. Yet achieving this requires significant and integrated advancement of different technologies. This analysis provides an accessible primer for the necessary interdisciplinary research effort, and discusses recent enabling biotechnological advancements, open research questions and corresponding R&D pathways, where enzyme and synthetic microbial consortia engineering, microfluidic technologies, membrane and electrode materials, modular system integration, and power optimization technology will likely be critical. In conclusion, AOM MFC is a very promising technology as the performance limits estimated here show, and if realized at scale, a significant impact on green-house gas reduction and sustainable, on-demand electricity and chemical (fuel) production could be achieved; this analysis could also aid the rational MFC design for other chemical reactions.
Keywords: Anaerobic methane oxidation (AOM); Microbial fuel cell (MFC); Electricity; Acetate; Lactate; Greenhouse gas (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032123006068
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:188:y:2023:i:c:s1364032123006068
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2023.113749
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().