EconPapers    
Economics at your fingertips  
 

Progress in passive daytime radiative cooling: A review from optical mechanism, performance test, and application

Yan Dong, Xinping Zhang, Lingling Chen, Weifeng Meng, Cunhai Wang, Ziming Cheng, Huaxu Liang and Fuqiang Wang

Renewable and Sustainable Energy Reviews, 2023, vol. 188, issue C

Abstract: By exploiting the 3 K coldness of outer space as heat sink of terrestrial thermal radiation, passive daytime radiative cooling (PDRC) can achieve sub-ambient temperatures without any energy consumption, and thus exhibiting extraordinary application potentials. By pursuing the dual-band (solar and atmosphere window) optical properties to approach ideal 100 %, PDRC can maximize dissipating long wavelength infrared radiation to space and minimize absorbing sunlight simultaneously. PDRC technology can reach146 W/m2 theoretical cooling power and up to 120 W/m2 during application. This article focuses on the fundamental physics mechanism of radiative transfer and natural radiative cooling phenomena. Methodologies of infrared absorption functional group selection, optical band gap selection for solar reflection, photon and phonon enhanced resonance by micro-structure were discussed in detail to give a comprehensive instructing strategy of radiative cooling power improvement. Although PDRC technology can achieve sum-ambient temperature cooling without consuming any energy, its drawbacks such as single function of cooling and high whiteness requirement needed to hinder its large-scale application. This article also outlines the current primary applications of PDRC technology, along with summarizing the challenges and potential opportunities it encounters in practical implementation. This paper aims to provide a comprehensive overview on the fundamental physical mechanisms, methods for enhancing its power output, as well as the current state and future developments of PDRC applications, providing potential guidance for reducing greenhouse gas emissions and energy consumption.

Keywords: Radiative cooling; Solar energy; Radiative transfer; Optical mechanism; Performance test; Expand application; Content (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032123006585
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:188:y:2023:i:c:s1364032123006585

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2023.113801

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:188:y:2023:i:c:s1364032123006585