Data-driven stochastic robust optimization of sustainable utility system
Qipeng Wang and
Liang Zhao
Renewable and Sustainable Energy Reviews, 2023, vol. 188, issue C
Abstract:
Sustainable utility systems reduce reliance on fossil fuels by using renewable energy sources. Multi-scale uncertainties associated with renewable energy and utility systems pose challenges to the modeling and optimization of sustainable utility systems. This study proposes a sustainable retrofit framework for utility systems based on a data-driven stochastic robust optimization approach. Kernel density estimation and fuzzy clustering were employed to capture the uncertainty features in a holistic framework. A life cycle assessment approach was used to calculate the global warming potential (GWP) of the sustainable utility system, and a multi-objective environmental and economic optimization model was developed. A nested decomposition-based algorithm was proposed to solve a large-scale mixed-integer nonlinear programming problem. Finally, a case study of an industrial utility system was conducted to demonstrate the effectiveness of the proposed method. The optimization results show that the proposed method reduces GWP by 9 % after introducing renewable energy and achieves a balance between economic and environmental performance.
Keywords: Industrial utility system; Renewable energy; Multi-scale uncertainties; Stochastic robust optimization; Decomposition-based algorithm; Carbon reduction (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032123006986
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:188:y:2023:i:c:s1364032123006986
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2023.113841
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().