Review of enhancing boiling and condensation heat transfer: Surface modification
Siyu Qin,
Ruiyang Ji,
Chengyu Miao,
Liwen Jin,
Chun Yang and
Xiangzhao Meng
Renewable and Sustainable Energy Reviews, 2024, vol. 189, issue PA
Abstract:
Data centers have tended to develop towards large scale and high density, with overall power consumption reaching up to 3 % of the total national electricity consumption. It is vital to establish energy-efficient electronic cooling devices for data center improvement. Phase-change heat transfer has emerged as a highly efficient method for addressing the heat dissipation problem. As the demand for micro-electronic cooling devices grows, enhancing the phase-change heat transfer has been a key focus of engineering research for several decades. Surface modification can effectively facilitate heat transfer favored by the surface area expansion and free energy transition. This review delved into the multiple processes involved in phase-change heat transfer, containing boiling and condensation. Considering the surface roughness and free energy, the wettability theories and manipulations of hydrophilic and hydrophobic surfaces were presented. The fabrication techniques available for modified surfaces mainly comprise coating, etching, template, sol-gen, and layer-by-layer assembly methods. The effects of patterned surface, wettability gradient surface, electrowetting surface, and wettability controllable surface on phase-change heat transfer enhancement were elaborated, particularly for the critical heat flux and heat transfer coefficients. This review of experimental and simulation results showed that surface wettability modification possesses a promising prospect in improving heat transfer performance. In this review, recommendations for the design of surface modification to promote the development of energy-efficient technologies in specific artificial environments were proposed. Further theoretical and experimental efforts need to create novel surfaces that can facilitate high-performance phase-change heat transfer across a range of applications.
Keywords: Phase-change heat transfer; Surface modification; Boiling; Condensation; Performance enhancement (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032123007402
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:189:y:2024:i:pa:s1364032123007402
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2023.113882
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().