EconPapers    
Economics at your fingertips  
 

Review on linerless type V cryo-compressed hydrogen storage vessels: Resin toughening and hydrogen-barrier properties control

Yan Yan, Jiaqiao Zhang, Guangzhao Li, Weihao Zhou and Zhonghua Ni

Renewable and Sustainable Energy Reviews, 2024, vol. 189, issue PA

Abstract: Cryo-compressed hydrogen (CcH2) storage has significant advantages such as long dormancy, high safety factor, and rapid filling; thus, it is suitable for the energy supply of heavy-duty vehicles. Carbon fiber composites for state-of-the-art linerless type V CcH2 storage vessels should have both pressure-bearing and hydrogen-barrier properties. However, these properties are difficult to achieve under cryogenic temperatures and high pressures. Resin failure is the main reason behind the degradation of cryogenic properties. In this work, methods to achieve resin toughening and hydrogen-barrier control are reviewed. Comparisons indicate that thermoplastics are more suitable for resin toughening than other materials, and that interlayer films can effectively block hydrogen permeation. Resins with added nanomaterials not only stop the propagation of microcracks but also generate tortuous paths within the composites to inhibit hydrogen permeation. However, the issues of temperature-induced strain and state regulation of nanomaterials must be further addressed. In this study, a resin film modified with toughening agents and nanomaterials was also designed. The film was then placed between carbon fiber plies. Hot-pressing and surface treatment of the resin film were performed to enhance the orientation of the nanomaterials and interlayer adhesion force. The proposed composite may be useful in the manufacture of linerless Type V CcH2 storage vessels.

Keywords: Type V vessel; Cryo-compressed hydrogen storage; Carbon fiber composites; Resin toughening; Hydrogen barrier (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032123008675
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:189:y:2024:i:pa:s1364032123008675

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2023.114009

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:189:y:2024:i:pa:s1364032123008675