EconPapers    
Economics at your fingertips  
 

Assessment of carbon footprint in Qatar's electricity sector: A comparative analysis across various building typologies

A. Abulibdeh, R.N. Jawarneh, T. Al-Awadhi, M.M. Abdullah, R. Abulibdeh and A.M. El Kenawy

Renewable and Sustainable Energy Reviews, 2024, vol. 189, issue PA

Abstract: Carbon footprint (CF) estimation has emerged as an integral tool for greenhouse gas (GHG) management, providing direction for emission reduction strategies and verification processes. Since capturing the full lifecycle emissions of goods and services at the city level can be methodologically challenging due to the fact that cities have multiple sources of emissions (e.g. transportation, waste, buildings), our study focused on evaluating the carbon footprint of various types of urban buildings across six sectors. This evaluation was conducted in one of the most rapidly urbanized cities in the Middle East, Doha City, Qatar, and was based on electricity consumption data from 2017 to 2020. Using multiregional input–output life cycle assessment (MRIO-LCA) and hot/coldspot analysis, this study identified CF emission spatiotemporal patterns and the major buildings responsible for the highest emissions. The results indicated that residential villas and the commercial sector had the highest electricity consumption and steady increases in CF emissions during the study period, whereas hotels had the lowest annual electricity consumption among all sectors. The study also identified significant CF emission hotspots from Doha residential buildings in the southwestern and northeastern areas. In contrast, the CF hotspots from commercial buildings were concentrated in the industrial area in the southern part of the city and in the West Bay area in the eastern part. Overall, the findings of this study provide important policy implications and a comprehensive assessment of dynamic changes in CF emissions from different building types.

Keywords: Carbon footprint; Hot/coldspot analysis; Life cycle assessment; Qatar; Climate change; Environmental sustainability (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032123008808
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:189:y:2024:i:pa:s1364032123008808

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2023.114022

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:189:y:2024:i:pa:s1364032123008808