Review of bioresource-based conductive composites for portable flexible electronic devices
Savisha Mahalingam,
Abreeza Manap,
Kam Sheng Lau,
Dita Floresyona,
Rinaldi Medali Rachman,
Sylvia Ayu Pradanawati,
Ramisha Rabeya,
Chin Hua Chia,
Nurfanizan Afandi and
Agung Nugroho
Renewable and Sustainable Energy Reviews, 2024, vol. 189, issue PB
Abstract:
Recent advances in portable electronics, such as foldable displays, smart clothing, and synthetic skins, have revealed new applications for everyday life. The high dependency on portable electronic devices in humankind's daily routine has raised the consumer's awareness of environmental and sustainability issues. These portable electronic devices commonly use non-renewable polymeric materials mainly obtained from petroleum and are a primary environmental concern. Hence, bioresource materials from renewable sources are biodegradable and have no adverse environmental effects. Mainly, biopolymers have recently emerged as a promising path in portable electronic devices due to their compliance with roll-to-roll processing, flexibility, and lightweight. However, the drawback of biopolymers compared to synthetic polymers is their inherent insulation properties. In order to increase the conductivity of biopolymers, incorporating them with conductive material is an excellent method. These biopolymer-based conductive composites possess outstanding electrical conductivity and mechanical properties. This review focuses on the recent advancements in flexible biopolymer-based conductive composites used in portable electronics such as energy storage, self-powered, and wearable sensors and devices. A detailed review of the type of flexible biopolymer-based conductive composites, such as fiber, film, gel, and cloth, is highlighted for each electronic device. The development of flexible biopolymer-based conductive composites was mainly used in energy storage devices, whereas self-powered devices had the least product developed. The wearable performance of these portable electronics was influential in the sustainability and reliability of these devices to be used in daily human activities.
Keywords: Energy; Electrical properties; Mechanical properties; Sustainable development goals (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032123008572
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:189:y:2024:i:pb:s1364032123008572
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2023.113999
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().