Bupleurum chinense and Medicago sativa sustain their growth in agrophotovoltaic systems by regulating photosynthetic mechanisms
Siqi Zhang,
Jirui Gong,
Cunde Xiao,
Xiaofan Yang,
Xiaobing Li,
Zihe Zhang,
Liangyuan Song,
Weiyuan Zhang,
Xuede Dong and
Yuxia Hu
Renewable and Sustainable Energy Reviews, 2024, vol. 189, issue PB
Abstract:
The three-dimensional nature of agrophotovoltaic systems (APV) accounts for the needs of photovoltaic power generation and agricultural production. The combination can solve conflicts among utilization of resources, ecological protection, and agricultural production to achieve low-carbon economic development. However, the economically respond (crop yield and quality) of different species under the decreased light available system is still unclear. To provide insights, we compared agrophotovoltaic and traditional ecosystems to explore the economic feasibility of planting Bupleurum chinense (B. chinense) and Medicago sativa (M. sativa) from the perspectives of light utilization, photosynthetic responses, and land use. The combined system improved the land equivalent ratio, net income and species quality of B. chinense and M. sativa. Both species showed high plasticity, and maintained growth and development by regulating their morphology and photosynthetic parameters. B. chinense in the APV increased its light use efficiency, photosynthetic rate, and root biomass by increasing its height, electron transfer flux, and up-regulating a photosystem I protein (PsaA). M. sativa in the APV allocated more energy to photochemical reactions to improve photosynthetic capacity. It captured and utilized the limited light by reducing leaf mass per unit area and dark respiration, increasing the chlorophyll content, and down-regulating a photosystem II protein (PsbD). Our results showed the importance of species selection based on morphological and photosynthetic responses and provide insights into the selection of appropriate species, efficient resource utilization, and sustainable economic development based on APV.
Keywords: Agrophotovoltaic systems; Light use efficiency; Biomass and quality; Photosynthetic mechanisms; Land equivalent ratio; Economic feasibility (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032123008821
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:189:y:2024:i:pb:s1364032123008821
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2023.114024
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().