A comprehensive review on deep learning approaches for short-term load forecasting
Yavuz Eren and
İbrahim Küçükdemiral
Renewable and Sustainable Energy Reviews, 2024, vol. 189, issue PB
Abstract:
The balance between supplied and demanded power is a crucial issue in the economic dispatching of electricity energy. With the emergence of renewable sources and data-driven approaches, demand-side or demand response (DR) programs have been applied to maintain this balance as accurately as possible. Short-term load forecasting (STLF) has a decisive impact on the success, sustainability, and performance of those programs. Forecasting customers’ consumption over short or long time horizons allows distribution companies to establish new policies or modify strategies in terms of energy management, infrastructure planning, and budgeting. Deep learning (DL)-based approaches for STLF have been referenced for a long time, considering factors such as accuracy, various performance measures, volatility, and adverse effects of uncertainties in load demand. Hence, in this review, DL-based studies for the STLF problem have been considered. The studies have been classified by several titles, such as the provided method and main ideas, dataset specifications, uncertain-aware approaches, online solutions, and practical extensions to DR programs. The main contribution of this review is the ongoing exploration of STLF with DL models to reveal the research direction of the load forecasting problem in terms of the future-oriented integration of the key concepts of online, robustness, and feasibility.
Keywords: Deep-learning; Short term load forecasting; Uncertainty awareness; Online forecasting; Demand response; Dataset (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032123008894
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:189:y:2024:i:pb:s1364032123008894
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2023.114031
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().