Dynamic reconfiguration of photovoltaic array for minimizing mismatch loss
Xiaolun Fang and
Qiang Yang
Renewable and Sustainable Energy Reviews, 2024, vol. 191, issue C
Abstract:
Mismatch conditions owing to different internal and external factors, such as partial shading and module defects, can directly degrade the power generation of distributed photovoltaic arrays. In this study, a reconfiguration solution called multiple switching matrices is proposed to mitigate mismatch losses for any size of the total-cross-tied photovoltaic array. In the proposed solution, the photovoltaic array is divided into several sub-arrays using switching matrices. The current and voltage values of each module are collected by the electric measurement sensors and sent to the control unit, and the proposed reconfiguration solution can be implemented by controlling switching matrices. The performance of the proposed reconfiguration solution is evaluated extensively for a range of mismatched conditions, including partial shading patterns and partial shading with random failure patterns. The P–V and I–V characteristics are analyzed by comparison with the existing sudoku-based arrangement and the conventional total-cross-tied interconnection topology. Moreover, three main parameters and standard deviations of the maximum power point for each pattern, are considered. The numerical results confirm the effectiveness and flexibility of the proposed reconfiguration solution for optimizing photovoltaic array generation under various mismatch conditions.
Keywords: Photovoltaic array reconfiguration; mismatch conditions; Multiple switching matrices (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032123010183
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:191:y:2024:i:c:s1364032123010183
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2023.114160
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().