Unveiling the potential of renewable energy and battery utilization in real-world public lighting systems: A review
Omid Sadeghian,
Behnam Mohammadi-Ivatloo,
Arman Oshnoei and
Jamshid Aghaei
Renewable and Sustainable Energy Reviews, 2024, vol. 192, issue C
Abstract:
Lighting systems, as one of the biggest energy consumers on a global scale, are being upgraded based on innovative energy-saving (hereafter E-saving), energy-efficiency (E-efficiency), and energy-cost (E-cost) reduction schemes. According to research, among lighting systems, public lighting systems (PLSs) have significant potential for such energy projects. It can be realized through smart dimming, installing light-emitting diode (LED) luminaries, using renewable energy, etc. Accordingly, this work reviews the E-saving, E-efficiency, and E-cost reduction schemes for real-world PLSs by giving related techno-economic formulation. In this regard, smart control/dimming approaches via combined Internet of Things and wireless technologies, installing LED luminaires, optimal layout design, reactive power compensation, etc., are discussed by reporting the saving potentials, the payback period of the investment, and carbon reduction effects. Moreover, the use of renewable energy (including photovoltaic panels, wind turbines, pump-as-turbine systems, biomass plants, etc.) integrated with batteries to power PLSs is discussed by giving the E-cost reduction potential. Moreover, the pros/cons of previous works, the key findings of this review work, and recommendations for future works are outlined. This work shows future research directions, identifies high-potential energy projects for energy planners, and outlines the importance of renewable energy in making PLSs more environmentally friendly. Moreover, the role of energy policymakers’ financial support in expediting the widespread enforcement of energy projects is outlined by studying the payback period of projects, which is about 5–7 years (on average 5.8 years, 6.9 years, 4.9 years, and 5.6 years for E-saving, E-efficiency, combined E-saving/E-efficiency, and E-cost reduction schemes, respectively).
Keywords: Electrical energy saving; Public lighting; Outdoor lighting; Street lighting; Emission reduction; Decarbonization; Renewable energy sources; Electric vehicles; Energy storage systems (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032123010997
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:192:y:2024:i:c:s1364032123010997
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2023.114241
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().