Optimization of a syngas-fueled SOFC-based multigeneration system: Enhanced performance with biomass and gasification agent selection
Oveis Abedinia,
Hamid Shakibi,
Afshar Shokri,
Behnam Sobhani,
Behrouz Sobhani,
Mortaza Yari and
Mehdi Bagheri
Renewable and Sustainable Energy Reviews, 2024, vol. 199, issue C
Abstract:
In light of abundant sources of biomass feedstocks and regarding the higher performance in syngas-fueled-based SOFC systems, this work proposes a novel multigeneration system based on the combination of syngas-fuel SOFC, Kalina cycle, humidification-dehumidification desalination unit, and proton exchange membrane electrolyzer. This system is designed for simultaneous production of power, heating, freshwater, and hydrogen. Comprehensive energy, exergy, exergoeconomic, environmental, and economic analyses have been conducted to evaluate its performance. The optimum input biomasses, gasification agents, and operating conditions were determined using a coupled approach of an artificial neural network, multi-objective Particle Swarm Optimization algorithm, and the Linear Programming Technique for Multidimensional Analysis of Preference decision-making method. Under base input conditions, the energy and exergy efficiencies of the proposed system were found to be 53.66 % and 38.2 %, respectively. The system also demonstrated the capability to produce 0.1633 kg/s of freshwater and generate a net power output of 377.6 kW. The results indicate that using oxygen-enriched air in the gasification process notably enhances efficiency while reducing emissions. Straw and CO₂ were identified as the optimal feedstock and gasification agent, yielding an exergy efficiency of 42.71 % and a total product cost of 6.29 $/GJ at the optimum point. Moreover, with a selling price of $0.20/kWh for electricity and a fuel cost of $6/GJ, the system can achieve total revenue of approximately $1.65 million with a payback period of 4.01 years. These findings underscore the proposed plant's profitability under specific pricing conditions, making it an attractive investment opportunity.
Keywords: Biomass gasification; Syngas-fed solid oxide fuel cell; Multigeneration system; Multi-objective optimization; Profitability analysis (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032124001837
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:199:y:2024:i:c:s1364032124001837
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2024.114460
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().