Achieving thermoelectric properties of ultra-high-performance concrete using carbon nanotubes and fibers
Rongzhen Piao,
Gi Woong Kim,
Booki Chun,
Taekgeun Oh,
Jae-Weon Jeong and
Doo-Yeol Yoo
Renewable and Sustainable Energy Reviews, 2024, vol. 199, issue C
Abstract:
The study investigated the impact of carbon nanotubes (CNTs), carbon fibers (CFs), steel fibers, and varying water-to-binder (W/B) ratios on the thermoelectric and mechanical properties of ultra-high-performance concrete (UHPC). Flowability tests revealed reduced flow with decreased water content and the addition of CNTs or CFs, particularly pronounced at a lower W/B ratio. Thermal gravimetric analysis and Fourier-transform infrared spectroscopy demonstrated differences in peak intensities and shifts in peaks related to the hydration products of the UHPC by the incorporation of the CNTs and CFs. The compressive strength and tensile performance increased with reduced W/B ratios and the inclusion of steel fibers, whereas the CNTs and CFs affected the strength differently based on their dispersion and interaction with other components that influenced porosity. The presence of steel fibers reduces the percolation threshold for CNTs and CFs, indicating a synergistic effect that enhances electron transport connectivity. The thermal conductivity increased with the addition of CNTs, CFs, and steel fibers, enhancing heat transfer within the UHPC. The thermoelectric figure of merit (ZT) values highlighted the combined impact of CNTs, CFs, steel fibers, and W/B ratios on the thermoelectric efficiency of the UHPC, showing significant improvements with the inclusion of steel fibers and the interplay between the CNTs and W/B ratios. Ultimately, upon introducing 1.5 % steel fibers and 0.3 % CNTs, a substantial enhancement in the thermoelectric ZT was observed, surpassing the standard UHPC values by 12 orders of magnitude.
Keywords: Ultra-high-performance concrete; Carbon nanotube and fiber; Percolation threshold; Tensile performance; Electrical conductivity; Seebeck coefficient; Figure of merit (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032124002193
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:199:y:2024:i:c:s1364032124002193
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2024.114496
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().