Change-point model-based clustering for urban building energy analysis
Sebin Choi and
Sungmin Yoon
Renewable and Sustainable Energy Reviews, 2024, vol. 199, issue C
Abstract:
Achieving carbon neutrality by 2050 requires evaluating and retrofitting existing buildings. However, despite the numerous studies on energy analytics, they usually focus on energy consumption patterns and motifs rather than encompassing various energy usage characteristics. This study proposes a novel symbolic hierarchical clustering for building energy analytics at the city level. It utilizes change-point model (CPM) parameters to represent building energy usage, performance, occupant behavioral characteristics. The clustering method based on the CPM parameters defines energy performance signatures (EPS) for determining their energy characteristics and as symbolic data transformation. In a case study conducted in Gangwon, South Korea, five different energy performance signatures (EPSs 1–5) showing their unique energy characteristics were determined for commercial buildings. EPS1 to 3 were classified as signatures with good performance (65.5% of all buildings) while EPS4 and 5 were classified as signatures with bad performance (34.5%). Using this EPS symbolic data, an EPS map was visualized and analyzed from various perspectives. For example, buildings that showed a continuous or overall decline in envelope performance over five years were among the oldest buildings (construction completion date closer to 1978; 7.9%). Despite poor envelope performance, buildings with lower energy usage showed a tendency for occupants to delay heating (28.4%). The proposed method can contribute to the data-driven building energy analytics in providing detailed insights into energy usage patterns, building energy performance, and occupant behavioral characteristics at the city level. The effectiveness of open-source energy data for urban building energy analysis would be improved through the proposed method.
Keywords: Energy performance evaluating; Symbolic hierarchical clustering; Open data; Change point model; Urban building energy; Energy performance signature (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032124002375
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:199:y:2024:i:c:s1364032124002375
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2024.114514
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().