EconPapers    
Economics at your fingertips  
 

Technology projection in biofuel production using agricultural waste materials as a source of energy sustainability: A comprehensive review

Surajudeen Sikiru, Kunmi Joshua Abioye, Habeeb Bolaji Adedayo, Sikiru Yesirat Adebukola, Hassan Soleimani and M. Anar

Renewable and Sustainable Energy Reviews, 2024, vol. 200, issue C

Abstract: Biofuel production using agricultural waste materials as a source of energy sustainability is an important and promising approach to address both energy and environmental challenges. This process involves converting various types of agricultural residues and by-products into biofuels, which can be used as renewable and cleaner alternatives to fossil fuels This study focuses on different pre-treatment procedures, biofuel production, and agricultural waste materials as a biomass source of biofuel production, feedstocks, and technology conversion, the combination of thermochemical and biochemical conversion methods in biorefineries can enhance productivity, reduce waste, and increase resource use, while reducing environmental impact and energy consumption. This study investigates some of the difficulties associated with agricultural waste materials are diverse and can include crop residues (such as straw, husks, and shells), animal manure, food processing waste, forestry residues, and more. Researchers and companies are actively working to improve the efficiency and viability of agricultural waste-to-biofuel processes. The study suggests that incorporating agricultural waste valorization, such as biochar as a soil amendment, can enhance the sustainability of biofuel production. This approach can mitigate climate change and promote sustainable agriculture. The circular economy strategy can minimize waste byproducts. The study also suggests that governmental interventions can support sustainable practices and prioritize renewable energy sources. The study revealed that biofuel production from microalgae and energy crops is the most profitable and effective method, with commercial-scale production potential due to genetic engineering advancements. However, large-scale production remains challenging, necessitating new technologies to boost biofuel production and meet energy needs.

Keywords: Biomass; Biofuel production; Agricultural waste; Energy consumption; Fossil fuels (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032124002582
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:200:y:2024:i:c:s1364032124002582

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2024.114535

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:200:y:2024:i:c:s1364032124002582