A data-driven optimization model for renewable electricity supply chain design
Homa Panahi,
Fatemeh Sabouhi,
Ali Bozorgi-Amiri and
S.F. Ghaderi
Renewable and Sustainable Energy Reviews, 2024, vol. 202, issue C
Abstract:
The rising electricity demand, driven by technological progress and population growth, has made the design of the electricity supply chain a major challenge. The transition to renewable energy sources has led to a substantial reduction in the costs and greenhouse gases emissions of electricity production. This study proposes a hybrid approach consisting of a recurrent neural network and an optimization model for designing a resilient electricity supply chain based on wind and solar energies. First, the electricity demand is forecast using the long short-term memory algorithm. Second, based on the forecast demand, a two-stage stochastic programming model is developed for designing an electricity supply chain under disruption risks. Partial and complete disruptions in power lines and facilities, including power plants, distribution and subtransmission substations, and low-power solar panel farms are considered. The objective of the proposed model is to minimize the total cost of the supply chain by making optimal decisions on facility location; technology selection for power plants; setting up transmission lines; and the quantity of power generation, power transmission, and power shortage in low- and high-voltage energy consumption systems. Three strategies are adopted to enhance the supply chain's resilience: multiple renewable energy sources, multiple power transmission lines, and lateral power lines. Lastly, the Sistan and Baluchestan Electric Power Distribution Company in Iran is used as a case study for this work to demonstrate the applicability of the proposed approach, analyze the findings, and derive relevant managerial insights.
Keywords: Electricity supply chain; Renewable energy sources; Data-driven approach; Resilience; Disruption risks; Long short-term memory (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032124003447
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:202:y:2024:i:c:s1364032124003447
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2024.114618
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().