EconPapers    
Economics at your fingertips  
 

Acidogenic gas utilization improves methane production in high-load digestion: Underlying mechanisms

Dominic Yellezuome, Xianpu Zhu, Xuwei Liu, Ronghou Liu, Chen Sun, Mohamed Hemida Abd-Alla and Abdel-Hamied M. Rasmey

Renewable and Sustainable Energy Reviews, 2024, vol. 202, issue C

Abstract: High-load reactors face a significant challenge with fatty acid accumulation. Although injecting acidogenic gas (H2 and CO2) into methanogenic reactors improves biogas production, its mechanisms and stability enhancement remain unclear. Therefore, this study investigated the potential of using acidogenic gas to enhance methane production and system stability in a high substrate-loading co-digestion system with decreasing hydraulic retention time (HRT) and its regulatory role by considering biological pathways. Acidogenic gas injection effectively managed volatile fatty acid accumulation, with a concomitant increase in methane production from 0.042 to 0.066 L/L h as HRT decreased (16–8 days). However, the methane yield decreased from 611 to 460 mL/g volatile solids. Microbial community analysis revealed an increased abundance of hydrogenotrophic methanogens, along with several acidogenic and syntrophic fatty acid oxidizing consortia with decreasing HRT. The HRT10.67 sample exhibited the highest microbial species diversity and richness in the methanogenic reactor. Metabolomics analysis showed acidogenic gas reduced energy synthesis related to the tri-carboxylic acid cycle and oxidative phosphorylation while profoundly regulating the metabolism of amino acids, lipids, fatty acids, membrane transporters and inhibitory substances, thereby strengthening methane metabolism pathways. This study provides valuable insights into the roles of acidogenic gas in regulating energy metabolism to enhance methane production and offers potential opportunities for improving lipid and protein degradation.

Keywords: Co-digestion; Two-stage anaerobic digestion; Hydraulic retention time; Acidogenic gas; Biohythane; Metabolomic analysis (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032124004246
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:202:y:2024:i:c:s1364032124004246

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2024.114698

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:202:y:2024:i:c:s1364032124004246