Modelling centrifugal-granulation-assisted thermal energy recovery from molten slag at high temperatures
Junjun Wu,
Hong Wang,
Xun Zhu and
Qiang Liao
Renewable and Sustainable Energy Reviews, 2024, vol. 202, issue C
Abstract:
It remains a longstanding challenge to recover the waste heat from molten slags in pursuit of lower energy and carbon intensity in the metallurgical industry. To tap the heat from molten slag, the enabling technology i.e. centrifugal-granulation-assisted thermal energy recovery (CGATER) has been proposed and evolved from the laboratory concept into technological embodiment. Further development and deployment of CGATER necessitate a thorough, informative understanding of the multiscale CGATER physics; this is often enabled by modelling. Yet, the availability of informative CGATER physics is very limited due to the insufficiency and complexity of CGATER models. It is thus nontrivial to understand the current CGATER models and most importantly, the challenges and opportunities in future CGATER development. Herein, we first introduce the fundamental physics of CGATER. Second, we provide an overview of the CGATER models in the recent decade. Finally, we further analyze the missing pieces in current CGATER models and suggest future development of the CGATER models. According to the authors’ opinion, revisiting current CGATER models is essential. In the future, joint efforts from academia and industry are advocated to develop multiscale, multiphase CGATER models which are expected to accelerate the large-scale implementation of CGATER in the metallurgical industry.
Keywords: Molten slag; Heat recovery; Multiphase flow; CFD model; Metallurgical industry (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032124004283
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:202:y:2024:i:c:s1364032124004283
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2024.114702
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().