EconPapers    
Economics at your fingertips  
 

An integrated consumption and production framework for analysing institutional greenhouse gas mitigation potential

Oren Goldfischer, Meidad Kissinger and Raziel Riemer

Renewable and Sustainable Energy Reviews, 2024, vol. 204, issue C

Abstract: Public and educational institutions consume significant amounts of energy and generate greenhouse gas (GHG) emissions. Mitigation initiatives have advanced the use of renewable sources and have reduced energy consumption. Advancing an effective GHG mitigation process should identify the contributing factors. Most previous university-related mitigation studies used models with detailed building structure parameters. This is useful when planning a building or during renovations, provided all information is available. However, it is challenging to implement this on existing campuses with diverse buildings. Furthermore, these models exhibit significant estimation errors. The analysis presented in this study introduces a framework for assessing institutional energy efficiency and the potential for GHG mitigation. It advances the integrated energy consumption and production models. The consumption model is data-driven based on measurements collected routinely by universities, and it estimates the amount of electricity that can be produced using photovoltaic (PV) solar power. The suggested institutional GHG mitigation framework was tested on a single campus but is relevant to any institution. The consumption model enabled the identification of significant energy consumers (lighting, computers, cooling, and heating), leading to a potential GHG mitigation of approximately 28 %. The production model revealed that utilising 20 % of the available campus area for PV panels could produce 26 % of the total annual electricity consumption. Thus, when the energy consumption and production models are combined, the university can reduce its emissions by half. In conclusion, this analysis demonstrates how a data-driven model can help identify the potential contributions of various steps toward institutional GHG mitigation.

Keywords: GHG mitigation; Climate wedges; Photovoltaic solar panels; energy consumption; Public and higher education institutions (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032124005185
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:204:y:2024:i:c:s1364032124005185

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2024.114792

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:204:y:2024:i:c:s1364032124005185