A review on micro combustion powered thermoelectric generator: History, state-of-the-art and challenges to commercialization
Guoneng Li,
Yiqi Fan,
Qiangsheng Li,
Youqu Zheng,
Dan Zhao,
Shifeng Wang,
Sijie Dong,
Wenwen Guo and
Yuanjun Tang
Renewable and Sustainable Energy Reviews, 2025, vol. 207, issue C
Abstract:
The frequent appearance of intense and abrupt weather episodes, geological disasters, and geopolitical instabilities pose challenges to the provision of distributed backup power sources. Such a situation has become even more severe, because the energy system is shifting towards decentralized energy production. Thermoelectric generator (TEG) as a solid-state energy conversion technology with captivating prospects has gained substantial attention due to its inborn nature of miniaturization, structure simplicity, little maintenance, and high energy density. TEG, integrated with fuel oxidation (biomass, hydrogen, and hydrocarbon combustion), becomes a potential distributed backup power source. Although the first concept of combustion powered TEG (CPTEG) was proposed for the first time in the 1950s, subsequent investigations proceeded very slowly, gaining attention again approximately 46 years later in 1996. Indeed, the reality that people increasingly rely on electricity in a society full of chaotic weather and geopolitical instabilities attracts many researchers to discover the TEG's potential. This has brought a growing number of studies on CPTEG and spectacularly increased expectations towards commercialization. This paper provides a detailed research roadmap by categorizing the papers published on CPTEG, showcasing the state-of-the-art, and revealing several important challenges before successful commercialization. Comprehensive discussions and analysis show that there are four interrelated, interactive, and restricted aspects that cause dense fogs of ongoing research and possible commercialization. The abovementioned aspects include combustion organization-capacity-noise, thermal collection-distribution-rejection, mechanical design-processing-cost, and electrical conditioning-management-robustness. At present, CPTEGs fueled with hydrogen or hydrocarbon are approaching the upper power generation efficiency, and advanced TE materials must be introduced to furtherly augment the performance. Besides, standalone operation and low noise level are two other aspects that gain less attention and must be solved before commercialization. On the other hand, CPTEGs fueled with biomass are still far from optimal ones, and combustion stability and efficient heat collection are two major technical obstacles.
Keywords: Thermoelectric; Combustion powered thermoelectric generator; Energy conversion; Distributed backup power source; Heat and power cogeneration (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032124006233
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:207:y:2025:i:c:s1364032124006233
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2024.114897
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().