EconPapers    
Economics at your fingertips  
 

Hydrogen jet and diffusion modeling by physics-informed graph neural network

Xinqi Zhang, Jihao Shi, Junjie Li, Xinyan Huang, Fu Xiao, Qiliang Wang, Asif Sohail Usmani and Guoming Chen

Renewable and Sustainable Energy Reviews, 2025, vol. 207, issue C

Abstract: Renewable Power-to-Hydrogen (P2H2) system is an emerging decarbonization strategy for achieving global carbon neutrality. However, the propensity of hydrogen to leak and diffuse from the P2H2 facility poses great challenges to scaling up and safe applications. Accurate and efficient prediction of hydrogen jet and diffusion is critical to ensure the safety and efficacy of P2H2 system. Deep learning methods have shown promise in predicting gas jet and diffusion, but their generalization is limited, because of insufficient simulation data and excluding physical laws during the training process. This study develops a physics-informed graph neural network (Physics_GNN) for hydrogen jet and diffusion prediction using sparse sensor data. Graph network is applied to model the spatial dependency between sensor data and governing equations, so the hydrogen jet and diffusion is immediately solved at each graph node. The computed residuals are then applied to constrain the training process of the graph network. Experimental data of subsonic and under-expanded hydrogen jet and diffusion are applied to validate the model. Results demonstrated Physics_GNN exhibits 1000 times higher prediction accuracy compared to state-of-the-art physics-informed neural network and 100 times faster than CFD simulation. It enables accurate and rapid prediction of hydrogen jet and diffusion concentration and velocity, supporting safety design, operation management and rulemaking of P2H2 system in future.

Keywords: Green hydrogen production; Power-to-Hydrogen; Hydrogen diffusion; Graph deep learning; Physics-informed neural network (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032124006245
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:207:y:2025:i:c:s1364032124006245

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2024.114898

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:207:y:2025:i:c:s1364032124006245