EconPapers    
Economics at your fingertips  
 

Advancing green hydrogen purification: Multiscale evaluation of membrane processes using novel software, pySembrane

Nahyeon An, Boram Gu, Junghwan Kim and Seongbin Ga

Renewable and Sustainable Energy Reviews, 2025, vol. 208, issue C

Abstract: Membrane-based separation processes are increasingly recognized as effective purification systems for green hydrogen, produced through ammonia cracking technology. These processes are valued for their energy efficiency, operational simplicity, and selective capabilities, and they benefit significantly from simulation-based approaches. Such methodologies expedite the exploration and evaluation of various membrane materials and operational strategies, which are crucial for the rapid development and optimization of membrane systems. However, the application of these simulations is often limited due to restricted access to process simulations and compatibility issues with existing commercial software tools. Additionally, the absence of software capable of assessing material properties and calculating the economic impacts at different scales limits the integration of studies from the molecular to the plant level. To address these challenges, this study introduces pySembrane, an open-source Python-based simulation package designed to lower the barriers to entry for the development and analysis of membrane systems. PySembrane provides users with advanced tools for the analysis of membrane systems, including specialized functions for evaluating material properties and process economics. This study presents case studies that illustrate the use of pySembrane in the screening of membrane materials and the optimization of membrane-based separation processes for the purification of green hydrogen. It also presents a case study on the integration of the membrane-based separation process with other unit operations, such as compressors and catalytic reactors. These case studies demonstrate the effectiveness of pySembrane in advancing membrane materials and operational strategies for green hydrogen separation, highlighting its potential to enhance process efficiency and sustainability.

Keywords: Membrane process; Process simulation; Open-source software; Python package; Hydrogen separation process (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S136403212400724X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:208:y:2025:i:c:s136403212400724x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2024.114998

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-23
Handle: RePEc:eee:rensus:v:208:y:2025:i:c:s136403212400724x