EconPapers    
Economics at your fingertips  
 

Low-carbon hydrogen production by molten metal–catalyzed methane pyrolysis: Catalysts, reactor design, and process development

G.U. Ingale, D.H. Park, C.W. Yang, H.M. Kwon, T.G. Wi, Y.J. Park, S. Kim, Y.B. Kang, Y.I. Lim, S.W. Kim and U.D. Lee
Authors registered in the RePEc Author Service: Soyoung Kim

Renewable and Sustainable Energy Reviews, 2025, vol. 208, issue C

Abstract: This review focuses on low-carbon H2 production via the non-oxidative decomposition of CH4. The plasma-based methane decomposition, water splitting, nuclear thermochemical cycles, and steam methane reforming were compared with those of molten metal (MM)-based CH4 pyrolysis based on thermodynamic, techno-economic, and environmental aspects. The selection of MM catalysts and reactor materials was described for CH4 pyrolysis, followed by sustainable heat sources and reactor configurations. An electromagnetic levitation method was presented to elucidate the intrinsic reaction rates based on the bubble surface area, regardless of the reactor type and residence time. Models including the physical properties of the gas and liquid phases, reaction kinetics, and mass transfer of carbon were then discussed for the effective design of MM-based bubble column reactors (MMBCRs). Moreover, a process flow diagram integrating natural gas pre-treatment, CH4 pyrolysis reaction, H2 and carbon separations, and H2 storage was introduced for commercial-scale H2 production. As carbon byproduct is three times the H2 weight, the applications of carbon products were investigated to improve the economic feasibility of MM-based CH4 pyrolysis. Metal impurities in the carbon byproduct should be removed to increase the purity and convert carbon into a high-value-added material. This review culminates with conclusions and future perspectives on low-carbon H2 production using MMBCRs.

Keywords: Low-carbon hydrogen production; Methane pyrolysis; Molten metal; Bubble column reactor; Reactor design; Carbon separation (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032124007251
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:208:y:2025:i:c:s1364032124007251

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2024.114999

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-06-09
Handle: RePEc:eee:rensus:v:208:y:2025:i:c:s1364032124007251