Cooling lithium-ion batteries with silicon dioxide -water nanofluid: CFD analysis
Husam Abdulrasool Hasan,
Hussein Togun,
Azher M. Abed,
Hayder I. Mohammed and
T. Armaghani
Renewable and Sustainable Energy Reviews, 2025, vol. 208, issue C
Abstract:
Temperature is recognized to have a major impact on the safety, performance, and cycle life of lithium-ion batteries (LiBs). Since LiB cells are sensitive to temperature variations, even little variations can result in a reduction in performance or even cell failure. This work introduces a novel cooling system utilizing SiO2-Water Nanofluid and CFD analysis to enhance the thermal management of lithium-ion battery packs with varying silicon dioxide nanoparticle diameters. The results showed that SiO2 nanofluids with smaller nanoparticle diameters had higher average Nusselt numbers at all Reynolds numbers. This is because smaller nanoparticles have a larger surface area, which increases the collision rate of the nanoparticles with the fluid and thus enhances heat transfer. The increase in Nusselt number was found to be 2.8 %, 5.5 %, 11.6 %, and 22.6 % for nanoparticle sizes of 50, 40, 30, and 20 nm, respectively. The results also showed that for all particle sizes, the temperature of cell 4 equalled the inlet temperature at Re = 30,000. This is because cell 4 is located at the first column of the system and is oriented towards the entrance section, which results in a large temperature difference between the cell and the coolant. Cell 4, therefore, experiences a higher heat discharge to the coolant than the other cells. Overall, this study has shown that smaller nanoparticles and higher Reynolds numbers significantly improve the heat exchange capacity of LiB cells. This can lead to improved electrical properties and extended battery cell lifespan.
Keywords: Lithium-ion battery; Silicon dioxide; Heat transfer augmentation; Nanofluids; Cooling system; Nanoparticles diameter (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032124007330
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:208:y:2025:i:c:s1364032124007330
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2024.115007
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().