Performance improvement of absorption chillers: A review on nanoparticle addition
M. Venegas,
M. de Vega and
N. García-Hernando
Renewable and Sustainable Energy Reviews, 2025, vol. 208, issue C
Abstract:
A review on the use of nanoparticles to improve the performance of absorption chillers is presented. The review includes a compilation and discussion of research data on the subject using as base fluids NH3-H2O, H2O-LiBr and other solutions. Topics analysed include: theoretical and experimental studies about mass transfer enhancement in absorbers and desorbers; research to improve performance of complete absorption chillers; evaluation of thermophysical properties and stability of nanofluids, including viscosity, surface tension, thermal conductivity and other properties; and other studies with results useful for implementation in absorption chillers. Trends about the use of nanofluids in absorption systems, type and concentration of nanoparticles that provide the best performances and specific topics that require more research are identified from the review. Strategies are proposed for future research or for decision makers related to absorption chillers.
Keywords: Nanoparticles; Absorption; Desorption; H2O-LiBr; NH3-H2O; Performance; Stability; Properties (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032124007342
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:208:y:2025:i:c:s1364032124007342
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2024.115008
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().