EconPapers    
Economics at your fingertips  
 

Advancement of thermochemical conversion and the potential of biomasses for production of clean energy: A review

Divya Bisen, Ashish Pratap Singh Chouhan, Manish Pant and Sankar Chakma

Renewable and Sustainable Energy Reviews, 2025, vol. 208, issue C

Abstract: This study delves into the promising realm of clean energy production through thermochemical conversion and chemical advancements. As the global demand for sustainable energy intensifies, exploring innovative technologies becomes imperative. The focus here is on harnessing the potential of thermochemical conversion, coupled with advancements in chemical processes. This dual approach holds significant promises for generating clean energy. The abstract underscores the critical role of these technologies in meeting escalating energy needs while shedding light on the advancements, challenges, and opportunities that pave the way for their successful implementation. Waste biomass represents an excellent bioresource that can be harnessed to produce numerous types of energy carriers, including bio-oil, bio-crude oil, biodiesel, syngas, biochar, and hydrogen. This article reviews the potential of various types of biomasses, including food waste, agricultural and forestry biomass, energy crops & oilseed crops, municipal solid waste, and animal manure, and also discusses the different types of reactors. In this review, comprehensively discusses all thermochemical methods for bio-oil production, including pyrolysis, gasification, and liquefaction. Each method is examined in detail, highlighting their respective processes, advantages, and challenges. Additionally, various types of reactors used in these methods are analyzed, emphasizing their roles and efficiencies in optimizing bio-oil yield and quality. Therefore, this review article will help in understanding the potentiality of waste biomasses for the production of clean energy via thermochemical techniques.

Keywords: Biomass; Waste management; Thermochemical conversion; Reactor; Value-added products; Catalytic pyrolysis; Clean energy (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032124007421
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:208:y:2025:i:c:s1364032124007421

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2024.115016

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-04-06
Handle: RePEc:eee:rensus:v:208:y:2025:i:c:s1364032124007421