Enhanced Gaussian process dynamical modeling for battery health status forecasting
W.W. Xing,
Z. Zhang and
A.A. Shah
Renewable and Sustainable Energy Reviews, 2025, vol. 208, issue C
Abstract:
Monitoring the state-of-health of Li-ion batteries is a critical component of battery management systems in electric vehicles. A large number of feature-based machine-learning methods have been introduced in the last decade to improve the accuracy of predictions of the state-of-health and end-of-life, especially early in the lifetime of the battery stack. Unless multiple battery data sets are used for direct and crude predictions of the end-of-life, however, such an approach is infeasible since the features are not known for future cycles. In this study a new nonlinear state-space model that can overcome this limitation is introduced. The powerful Gaussian process dynamical model is extended by generalizing the covariance structure, and therefore permitting more flexible models for the observables and latent variables. The model is further enhanced with transfer learning, to yield accurate early predictions of the future state-of-health of Li-ion batteries up to end-of-life. Experiments conducted on two of the NASA Ames Battery data sets and the Oxford Battery Degradation data set demonstrate the accuracy and superiority of the new model over state-of-the-art benchmarks algorithms, including supervised Gaussian process models, deep convolutional networks, recurrent networks and support vector regression. The root mean square error is reduced by up to 43% on the NASA data sets and by up to 54% on the Oxford data set.
Keywords: Li-ion battery degradation; Nonlinear state-space model; Gaussian processes; Markov model; Transfer learning; Features (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032124007718
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:208:y:2025:i:c:s1364032124007718
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2024.115045
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().