EconPapers    
Economics at your fingertips  
 

Analytical pyrolysis of biomass using pyrolysis-gas chromatography/mass spectrometry

Junhui Hao, Fanfan Xu, Dan Yang, Bo Wang, Yingyun Qiao and Yuanyu Tian

Renewable and Sustainable Energy Reviews, 2025, vol. 208, issue C

Abstract: Analytical pyrolysis is currently showing tremendous potential for investigating biomass conversion into chemicals and biofuels, of which the most notable is the pyrolyzer coupled with the gas chromatography/mass spectrometry (Py-GC/MS) technique. This review aimed to summarize the different approaches (i.e., conventional pyrolysis, stepwise pyrolysis, and catalytic pyrolysis) conducted using Py-GC/MS, as well as the composition and distribution of resulting products. The basic plausible pyrolysis mechanisms were first summarized based on the analytic pyrolysis of typical chemical components, i.e., cellulose, hemicellulose, lignin, protein, and lipid. As for the conventional pyrolysis proceeded by using Py-GC/MS, the influence of biomass types and operation parameters was discussed, which indicated that biomass types and final temperature played a dominant role in regulating the composition and distribution of products. Subsequently, the product release behaviors at different stages were revealed and discussed via Py-GC/MS experiments using stepwise pyrolysis. The primary objectives of different stepwise pyrolysis approaches (torrefaction and pyrolysis, two-step pyrolysis, and multi-step pyrolysis) were to produce value-added chemicals or increase bio-oil quality. Furthermore, the catalytic effects of various catalysts, including soluble inorganic salts, metal oxides, microporous zeolites, and mesoporous zeolite, were also summarized and compared to elucidate the role of catalysts in catalytic pyrolysis for targeted product production. Based on the above, the potential practical implications and current limitations that exist in the application of analytical pyrolysis were also proposed, with the aim of improving the effectiveness of Py-GC/MS in future applications.

Keywords: Py-GC/MS; Direct pyrolysis; Stepwise pyrolysis; Catalytic pyrolysis; Product composition; Pyrolysis mechanism (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032124008165
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:208:y:2025:i:c:s1364032124008165

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2024.115090

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:208:y:2025:i:c:s1364032124008165