EconPapers    
Economics at your fingertips  
 

An efficient uncertainty analysis of performance of hydrogen storage systems

Saurabh Tiwari, Akshay Kumar, Gaurav Tiwari and Pratibha Sharma

Renewable and Sustainable Energy Reviews, 2025, vol. 209, issue C

Abstract: The metal hydride hydrogen storage systems are gaining popularity due to their high volumetric capacity, safety and stability. The designing of these systems is complex due to many reasons, including input uncertainties. The performances of these systems are often evaluated in deterministic framework, ignoring uncertainties. This includes over-conservative safety factors in the design process increasing time and costs involved in designs. The uncertainty analysis could be a better alternative to assess system performance under such scenarios. This study investigates– i) the effect of input uncertainties on uncertainties of multiple and implicit system outputs, i.e., reaction fraction and bed temperature, ii) application of response surface and Borgonovo’s global sensitivity analysis for efficient analysis, and iii) a comparative assessment between different uncertainty methods. The methodology is demonstrated for a space heating system. Initially, a surrogate relationship is constructed between inputs-outputs using moving least square response surface, based on known input-output data estimated using COMSOL for random input realizations. Next, the sensitive inputs were identified using Monte-Carlo simulations based Borgonovo’s analysis. Finally, the effect of uncertainties of sensitive inputs on outputs were estimated using different uncertainty methods. Harr’s and Hong’s (2n) point estimate methods were observed to be highly accurate, mathematically simpler and efficient, as compared to other methods. The uncertainties of outputs were directly dependent on uncertainties of sensitive inputs. The probabilistic safety measure, reliability index, estimated using output statistics was of significant practical utility for industries to avoid deterministic safety factors based over-conservative and costly designs of storage systems.

Keywords: Hydrogen storage; Uncertainty propagation; Acceptable probability; Moving least square-response surface; Borgonovo’s GSA (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032124008335
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:209:y:2025:i:c:s1364032124008335

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2024.115107

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-25
Handle: RePEc:eee:rensus:v:209:y:2025:i:c:s1364032124008335