Artificial intelligence-based strategies for sustainable energy planning and electricity demand estimation: A systematic review
Julius Adinkrah,
Francis Kemausuor,
Eric Tutu Tchao,
Henry Nunoo-Mensah,
Andrew Selasi Agbemenu,
Akwasi Adu-Poku and
Jerry John Kponyo
Renewable and Sustainable Energy Reviews, 2025, vol. 210, issue C
Abstract:
Access to electricity is a cornerstone for sustainable development and is pivotal to a country's progress. The absence of electricity impedes development and elevates poverty. The first step in sustainable energy planning is accurately estimating the people's electricity demand. However, accurately estimating or modelling electricity demand for localised communities has been a longstanding challenge since the inception of electricity, exacerbated by the continuous introduction of new electrical appliances, the need for more accurate and available data, and the unpredictable behaviour of individuals when using these appliances. This study seeks to develop a systematic review of existing research on predicting or forecasting electricity consumption in rural and urban areas. The study considered a bottom-up, top-down and hybrid approach with Machine Learning (ML), Deep Learning (DL), decomposition ensemble and AI-based optimization as techniques leveraged. The limitations of the models employed were also outlined, and lastly, open challenges and future directions were proposed. It was observed from the model categorization that decomposition ensemble and hybrid techniques may give a promising result; hence, they could help create an accurate and robust prediction or forecasting model for electricity demand.
Keywords: Electricity demand; Forecasting; Prediction; Estimation; Top-down; Bottom-up artificial intelligence; Urban; Rural (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032124008876
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:210:y:2025:i:c:s1364032124008876
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2024.115161
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().