A systematic review on liquid air energy storage system
Xingqi Ding,
Liqiang Duan,
Nan Zheng,
Umberto Desideri,
Yufei Zhou,
Qiushi Wang,
Yuanhui Wang and
Weijia Jiao
Renewable and Sustainable Energy Reviews, 2025, vol. 210, issue C
Abstract:
Liquid air energy storage (LAES) has emerged as a promising solution for addressing challenges associated with energy storage, renewable energy integration, and grid stability. Despite current shortcomings, including low round-trip efficiency, poor economic performance, and limited engineering applications, LAES still demonstrates significant potential, particularly in short-term large-scale energy storage and renewable energy power integration, thanks to the high energy storage density, lack of geographical limitations, and minimal environmental impact. Previous review papers predominantly addressed advancements in thermodynamics and economics but overlooked key aspects such as dynamic performance and sustainability. Additionally, these review papers heavily emphasized system simulations, neglecting the research progress in experimental studies. Furthermore, the summaries of advancements in LAES subsystems were insufficient. This paper fills the gaps mentioned above and provides a comprehensive overview of LAES technology, covering its development history, comparison with other energy storage technologies, and research progress of LAES subsystems, standalone LAES systems, and hybrid LAES systems. Despite these achievements, key challenges remain, including high initial investment costs, complex technical requirements, and low operational efficiency, which collectively constitute barriers to the widespread adoption of LAES technology. This paper also identifies current research shortcomings and provides recommendations for future research directions. Further research and development of LAES technology are essential for alleviating fossil fuel shortages, environmental pollution, and excessive greenhouse gas emissions, and for realizing the full potential of LAES and its widespread application in the renewable energy utilization and energy storage sectors.
Keywords: Liquid air energy storage; LAES subsystem; Standalone LAES; Hybrid LAES; System performance (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032124008906
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:210:y:2025:i:c:s1364032124008906
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2024.115164
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().