EconPapers    
Economics at your fingertips  
 

Dissection of hydrogen-rich blast furnace: The continuous reduction and phase migration mechanism of sinter in lumpy zone

Pan Yang, Shuixin Ye, Fengmei Wang, Xiaodie Hu, Yuwen Zhang, Wenhe Wu, Kai Zhu and Xionggang Lu

Renewable and Sustainable Energy Reviews, 2025, vol. 212, issue C

Abstract: To mitigate carbon dioxide emissions, hydrogen has been widely utilized in blast furnace (BF). In this study, the continuous reduction and phase migration of sinter in the lumpy zone were investigated by dissecting a 40 m3 hydrogen-rich blast furnace (HBF). The findings demonstrate that injecting hydrogen into the BF significantly broadens the lumpy zone and accelerates sinter reduction. The reduction process was divided into three stages, with reduction rate of 26.37 %, 84.75 %, and 87.07 % in each stage, respectively. Correspondingly, metallization rates reached 5.88 %, 82.28 %, and 84.85 %. Compared to a traditional blast furnace (TBF), the reduction and metallization rates were enhanced by 47.07 % and 69.85 %, respectively. Microstructural analysis revealed the growth of metallic iron and the aggregation of non-ferrous elements, including Al, Ca, and Mg. These results highlight the potential of hydrogen to enhance indirect reduction reactions, providing critical insights for optimizing batching regimes and advancing the transition to more sustainable ironmaking processes.

Keywords: Hydrogen-rich blast furnace; Dissection; Lumpy zone; Sinter; Continuous reduction; Migration mechanism (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032125000668
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:212:y:2025:i:c:s1364032125000668

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2025.115393

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-24
Handle: RePEc:eee:rensus:v:212:y:2025:i:c:s1364032125000668