Integrating green infrastructure, design scenarios, and social-ecological-technological systems for thermal resilience and adaptation: Mechanisms and approaches
Xizhen Huang,
Runming Yao,
Christos H. Halios,
Prashant Kumar and
Baizhan Li
Renewable and Sustainable Energy Reviews, 2025, vol. 212, issue C
Abstract:
Urbanization and urban overheating present significant heat exposure risks to city dwellers, underscoring the urgent need to enhance the thermal resilience of social-ecological-technological systems. However, understanding how humans interact with the urban environment to design thermally comfortable adaptation spaces and formulate effective resilience strategies remains unclear. Therefore, the overarching aim of this study is to investigate critical factors and generate actionable insights that can inform the development of effective strategies for enhancing thermal resilience in urban environments. An integrative review approach was conducted combining a scoping review and a bibliometric analysis. The principal findings highlight the significance of green infrastructure, urban canyons, and building stock scenarios in designing comfortable microclimates. Behavioural adaptation for access to the design scenarios plays an important role in achieving thermal comfort. Key driving forces influencing design scenarios are identified, including social vulnerability protection and economic resource feasibility in the social system, air pollutant reduction and biodiversity protection in the ecological system, and cooling effectiveness and energy efficiency in technological systems. Stakeholder and expert involvement are necessary to develop interventions and strategies for strengthening thermal resilience. The proposed frameworks attempt to provide a comprehensive understanding of human-urban interaction and adaptation mechanisms and offer a general approach to developing interventions and strategies for thermal resilience. The findings contribute to providing planning and design strategies by improving the ability of the built environment and humans to adapt to escalating climate warming and the rise in extreme heatwave events, thereby supporting the sustainability and well-being of urban populations.
Keywords: Thermal adaptation; Comfort theory; Heat stress mitigation; Urban resilience; Resilient city; Nature-based solution; Urban ecosystem service; Sustainability; Urban systems (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032125000954
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:212:y:2025:i:c:s1364032125000954
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2025.115422
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().